Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581718

ABSTRACT

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Humans , Immunization , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology
3.
Biochem Biophys Res Commun ; 578: 91-96, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1401240

ABSTRACT

The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Disease Models, Animal , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Body Weight/drug effects , COVID-19/virology , Female , Humans , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Survival Analysis
4.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: covidwho-985727

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunization, Secondary , Immunogenicity, Vaccine , Mice , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage
5.
Virus Res ; 278: 197863, 2020 03.
Article in English | MEDLINE | ID: covidwho-35

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with ∼35 % mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SΔTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SΔTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five monoclonal antibodies (mAb) did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.


Subject(s)
Antibodies, Monoclonal/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Binding Sites , Cell Line , Cross Protection , Epitopes , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Neutralization Tests , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL